MDGs Break Ground For SDGs: Is India Poised To Achieve The Health Goals?

The Millennium Development Goals (MDGs) were placed in the pages of history amid several other remarkable global initiatives of the United Nations (UN), as the timeframe for achievement of these targets got over in 2015.

In 2000, the leaders of 189 countries signed this historic millennium declaration at the United Nations Millennium Summit for improving the lives of the world’s poorest people. Eight MDGs, were agreed upon by its members, each one supported by 21 specific, measurable targets and more than 60 indicators with clear deadlines, as a concerted global movement in this direction. The eight goals spanned across the areas of poverty alleviation, providing universal primary education, ensuring gender equality, preventing child mortality, meeting maternal health needs, protecting the environment and entering various global partnerships, with a target achievement date of 2015.

Did the glass remain ‘half-full’ or ‘half-empty’?

At the end of 2015 the UN reportedly called the MDGs ‘the most successful anti-poverty movement in history’. However, it could probably be a matter of looking at this glass either as ‘half-full’ or ‘half-empty’.

An interesting article published in the international daily ‘The Guardian’ on July 06, 2015, highlighted some hits and misses of MDGs from the global perspective.

Globally, several goals of the MDGs have not been made for various reasons. Focusing on health-related areas, I find, though the child mortality rate has reduced by more than half over the past two and a half decades from 90 to 43 deaths per 1,000 live births, its MDG target of an expected decline by two thirds could not be achieved.  Similarly, the global maternal mortality ratio despite falling by nearly half, was far short of its aim of a two-thirds reduction. Likewise, despite the reduction of the number of new HIV infections by around 40 percent between 2000 and 2013, its MDG goal of halting and beginning to reverse the spread of HIV/Aids by 2015 has not been met.

The overall status in India:

According to the United Nations in India, in the above focus areas, the country has made some progress in reducing its under-five mortality rate, which declined from 125 per 1,000 live births in 1990 to 49 per 1,000 live births in 2013; maternal mortality rate also declined from 437 per 100,000 live births in 1990-91 to 167 in 2009.

India recorded significant progress in reducing the prevalence of HIV and AIDS across different types of high-risk categories, with adult prevalence reducing from 0.45 percent in 2002 to 0.27 percent in 2011. However, a quarter of global TB cases still occur in India with nearly 2.2 million people are diagnosed with the disease annually, and an estimated 220,000 die as a result.

MDGs and India’s achievements:

Coming now to target versus achievements, the Millennium Development Goals India Country Report 2015 released by the Ministry of Statistics & Program Implementation (MoSPI) in February 2015, states that India had put considerable emphasis on all the MDGs with significant progress. Although the nation could meet targets of some of these well ahead of the 2015 deadline, overall, only six of the 18 targets adopted as part of the eight goals in 2000 have been fully met. However, according to another report brought out by the U.N. Economic and Social Commission for Asia and the Pacific, India has met only four of the eight MDGs.

As per Sample Registration System 2013, though the overall reduction of Under 5 Child Mortality Rate (U5MR) was nearly 60 percent happened during 1990 to 2013, India had missed this target.

Similar were the performances for a reduction in the Infant Mortality Rate (IMR) and the proportion of one year old children immunized against measles and improving the Maternal Morality Ratio (MMR). However, the prevalence of HIV among pregnant women aged 15-24 years showed a declining trend and incidence of Malaria also came down. Thus, it appears that the progress made and the achievements recorded in India against MDG targets are indeed a mixed bag.

The same question, therefore, logically follows for India too: Has the glass become ‘half-full’, or remained half-empty post MDG efforts?

MDGs break ground for ‘Sustainable Development Goals (SDGs)’:

The MDGs comprising of eight goals to eradicate extreme poverty, were indeed a laudable concerted global initiative of the United Nations. It could reportedly bring over a billion people out of extreme poverty. According to ‘United Nations (2015): The Millennium Development Goals Report’, during the period of 1990 to 2015, extreme poverty fell in developing countries from 47 to 14 percent. Similarly, the proportion of undernourished people fell by almost half, with almost similar decline in the child and maternal mortality rate. Nevertheless, communicable diseases, gender/income inequalities and striking disparities between rural and urban areas continued to persist with the world’s poor remaining overwhelmingly concentrated in several areas.

Thus, learning valuable lessons and significantly benefitting from them, MDGs broke ground for the next logical global initiative in this genre. As the time-frame for implementation of MDGs got over in 2015, the global leaders on the same platform of the United Nations followed it through with the newly developed ‘Sustainable Development Goals (SDGs)’ in the same year.

While aiming to make the outcomes of the new drive more sustainable with a focus on the environmental goals, SDGs did not altogether jettison some of the unfinished agenda of MDGs – mainly for continuity. Unlike MDGs, SDGs are targeted primarily to the developing, least developed and poorest countries. Nevertheless, all member countries of the UN require participating, fund and actively contribute in achieving SDGs targets, no matter how developed they are.

While MDGs had only 8 goals, 21 targets and 63 indicators, SDGs are a set of 17 goals and 169 targets that all 193 UN Member States, including India have committed to achieve between 2016 and 2030. Importantly, though MDG targets were adopted in 2002 and got over in 2015, its effective time span for achievement was of 25 years, as the baseline data used were for the year 1990 with some subsequent revisions. Whereas the baseline for SDGs starts from 2015 estimates, which may be revised to actual figures as and when these are made available.

Health goals in SDG:

Health has a central place in SDG 3 to ‘ensure healthy lives and promote well-being for all, of all ages’. Briefly speaking, it commits itself to a global effort to eradicate epidemics of both communicable and non-communicable disease and strengthen health systems’ capacity, ensuring Universal Health Coverage (UHC), along with making medicines and vaccines affordable to all. In addition, SDG 3 clearly focuses on mental health issues with suicide being the second leading cause of death globally between the ages of 19 to 25. It also aims at reducing the numbers of deaths and illnesses caused by air, water, and soil pollution and contamination, significantly.

Towards further enhancing public policy efforts, SDG 3 emphasizes on strengthening the implementation of the WHO Framework Convention on Tobacco Control; supporting the research and development of vaccines and medicines; substantially increasing health financing; the recruitment, development, training, and retention of the health workforce; and strengthen early warning, risk reduction, and management of health risks. Besides, a few targets falling under other different goals are also linked to the health goal of SDG 3, in various ways.

SDG 3 targets:

According to the ‘Resolution adopted by the General Assembly on 25 September 2015’ on ‘Transforming our world: the 2030 Agenda for Sustainable Development’, SDG 3 lays down nine key targets, as follows, though a few of which overlap with the MDGs:

  • Reduce the global maternal mortality ratio to below 70/100,000.
  • Reduce neonatal mortality to below 12/1,000 and U5MR to below 25/1,000.
  • End the epidemics of AIDS, tuberculosis, malaria, and neglected tropical diseases and combat hepatitis, waterborne diseases, and other communicable diseases.
  • Reduce by one-third premature mortality from non-communicable diseases.
  • Strengthen the prevention and treatment of substance abuse.
  • Halve the number of global deaths and injuries from road traffic accidents (by 2020).
  • Ensure universal access to sexual and reproductive health care services.
  • Achieve universal health coverage.
  • Reduce the number of deaths and illnesses from hazardous chemicals and air, water, and soil pollution and contamination.

Is India poised for it now?

This is indeed a critical question. I guess, no one can just yet vouch, with a great degree of certainty, what exactly would India ultimately achieve against the SDG 3 targets. That said, I reckon, India has now all its success ingredients in place. Let me deliberate on just a few broad but very important ones out of all those, as hereunder:

  • With the announcement of the National Health Policy 2017 (NHP 2017) and commitment to the same by none other than Prime Minister Modi himself, focusing on public health has now been recognized as one of the critical ingredients for the future economic prosperity of India. Hence, there is a fair chance now that the nation’s public health expenditure as a percentage of GDP would be gradually raised from around 1.2 percent to 2.5 percent – expectedly by 2020, bringing health in the core development agenda of both the Central and the State Governments.
  • The unfinished task of achieving MDGs needs to be completed faster, driven by its ongoing momentum. The national and the respective States-specific goals, along with a clear roadmap to achieve the targets within the specified time-frame, outlining the success indicators for each deliverable, assigning accountability to designated individuals with a periodic review system for the same, needs to be put in place, soon, actively encouraged by the current national development oriented Union Government, if not initiated already.
  • The process of implementation of the Universal Health Coverage (UHC), as enunciated in the NHP 2017 should be hastened. This is necessary to bring the entire population, without any discrimination whatsoever, as the beneficiary of this movement.
  • Scaling up the capacity building process at a much faster pace for the entire public health infrastructure and service delivery systems, along with skill development programs need to be placed at the center stage of the public health agenda of India, to bring SDG 3 to fruition.
  • Strategic involvement of private players and the credible NGOs to achieve SDG 3 targets would help move faster to ultimately experience the sense of a great public health related achievement for all concerned within, and probably outside the country, as well.

In conclusion:

As MDGs break ground for SDGs, India seems to me quite poised to achieving its health goals.

Moving towards this direction will invite a sharp focus on addressing the  non-communicable diseases, as well, while accelerating the ongoing efforts on maternal and child health, and nutrition.

It goes without saying that meeting SDG 3 targets will require adequate public investments for health, besides a well-crafted and time-bound public health policy, charting a clear roadmap for the same. The current Union Government now appears to have committed to both, putting its National Health Policy 2017 in place.

Once these goals are attained, it will enable India to clearly ‘Ensure healthy lives and promote well-being for all, at all ages’. In that process, a new India will be created where all essential public health related needs and demands of all, irrespective of their socioeconomic status, will be expeditiously taken care of, delivering with precision high quality of products and services.

Hopefully, the transformed India would then demonstrate to the world, as someone had said before, it’s just not a matter of ‘more money for health, but also more health for money’.

By: Tapan J. Ray

Disclaimer: The views/opinions expressed in this article are entirely my own, written in my individual and personal capacity. I do not represent any other person or organization for this opinion.

Sharper Focus On Vaccine: A Huge Scope To Reduce Disease Burden In India

Several international research studies have conclusively established that the aggressive application of nationally recommended prevention activities could significantly reduce the burden of disease in several areas. Immunization or vaccination program is one such critical areas.

Several ailments, which used to be so common all over the world, can now be effectively prevented through vaccination. The most common and serious vaccine-preventable diseases are: diphtheria, Haemophilus influenzae serotype b (Hib), hepatitis B and C, measles, meningitis, mumps, pertussis, poliomyelitis, rubella, tetanus, tuberculosis, rotavirus, pneumococcal disease and yellow fever.  The list of the World Health Organization (WHO) indicates that vaccines are now available for 25 different diseases.

Thus, vaccination can save millions of lives and morbidity that such diseases still cause to a very large number of global population. Thanks to vaccines, two most scary diseases – small pox (totally) and polio (almost totally), have been eliminated from the world.

No doubt, why vaccination was voted as one of the four most important developments in medicine of the past 150 years, alongside sanitation, antibiotics and anesthesia by readers of the ‘British Medical Journal (BMJ)’ in 2007. It has been decisively proved that vaccines are one of the most successful and cost-effective public health interventions, which help preventing over 3 million deaths every year, throughout the world, topping the list in terms of lives saved.

In tandem, concerted efforts need to be made by both the industry and the Governments to improve affordable access to all these vaccines for a larger section of the population, especially in the developing world.

A crying need still exists:

Nevertheless, there is still a crying need for greater encouragement, more resource deployment and sharper focus towards newer vaccine development for many more dreaded and difficult diseases. One such area is malaria vaccine.

Some areas of new vaccine development:

Following is an example of some newer therapy areas where novel vaccines are now reportedly under development:

  • Malaria vaccine
  • Cancer vaccine
  • AIDS
  • Alzheimer’s disease

Malaria vaccine:

A July 24, 2015 article of the BBC News states, the ‘European Medicines Agency (EMA)’ gave a positive scientific opinion after assessing the safety and effectiveness of the first anti-malarial vaccine of the world – Mosquirix, developed by the British pharma major GlaxoSmithKline.

The vaccine reportedly targets the ‘P. falciparum’, the most prevalent malaria parasite and the deadlier of the two parasites that transmit the disease. At present, in the absence of any licensed vaccines for malaria, the main preventive measures to contain the spread of this parasitic disease are spraying of insecticides, use of other mosquito repellent and mosquito nets.

However, it was observed during its clinical trial that he best protection with this vaccine was achieved among children aged five to 17 months, receiving three doses of the vaccine a month apart, plus a booster dose at 20 months. In this group, cases of severe malaria were cut by a third over a four-year period, the report said.

Some concern was also expressed, as the effectiveness of the vaccine waned over time, making the booster shot essential, without which the vaccine did not cut the rate of severe malaria over the trial period. Moreover, the vaccine did not prove very effective in protecting young babies from severe malaria.

This caused a dilemma for the ‘World Health Organization (WHO)’. On the one hand, the stark reality of malaria killing around 584,000 people a year worldwide, and on the other, lack of conclusiveness in the overall results for this vaccine. Therefore, the world health body decided at that time to further consider about it, soon after the experts’ deliberation on whether to recommend it for children, among whom trials have yielded mixed results, gets completed.

The good news is, on November 18, 2016, Newsweek reported the announcement of the W.H.O, that Mosquirix will be piloted across sub-Saharan Africa in 2018, after a funding approval of US$ 15 million for this purpose.

Cancer vaccines:

According to the National Cancer Institute, which is a part of the National Institutes of Health (NIH) of the United States, cancer vaccines belong to a class of substances known as biological response modifiers. Biological response modifiers work by stimulating or restoring the immune system’s ability to fight infections and disease. There are two broad types of cancer vaccines:

  • Preventive (or prophylactic) vaccines, which are intended to prevent cancer from developing in healthy people.

-       Persistent infections with high-risk human papillomavirus (HPV) types can cause cervical cancer, anal cancer, oropharyngeal cancer, and vaginal, vulvar, and penile cancers. Three vaccines are approved by the US Food and Drug Administration (FDA) to prevent HPV infection: Gardasil®, Gardasil 9®, and Cervarix®.

-       Chronic Hepatitis B virus (HBV) infection can lead to liver cancer. The FDA has approved multiple vaccines that protect against HBV infection, such as, Engerix-B and Recombivax HB, which protect against HBV infection only.

  • Treatment (or therapeutic) vaccines, which are intended to treat an existing cancer by strengthening the body’s natural immune response against the cancer. Treatment vaccines are a form of immunotherapy.

-       In April 2010, the USFDA approved the first cancer treatment vaccine. This vaccine, sipuleucel-T (Provenge®), is approved for use in some men with metastatic prostate cancer. It is designed to stimulate an immune response to prostatic acid phosphatase (PAP), an antigen that is found on most prostate cancer cells.

Another type of cancer vaccine is currently being developed, known as the Universal Cancer Vaccine.

  • Universal Cancer Vaccine,  June 1, 2016 issue of ‘The Independent’ reported that scientists of Johannes Gutenberg University in Germany have taken a “very positive step” towards creating a universal vaccine against cancer that makes the body’s immune system attack tumors as if they were a virus. The researchers had taken pieces of cancer’s genetic RNA code, put them into tiny nanoparticles of fat and then injected the mixture into the bloodstreams of three patients in the advanced stages of the disease. The patients’ immune systems responded by producing “killer” T-cells designed to attack cancer.

The vaccine was found to be effective in fighting “aggressively growing” tumors in mice. At the same time, such vaccines are fast and inexpensive to produce, and virtually any tumor antigen (a protein attacked by the immune system) can be encoded by RNA, the report said.

The analysts forecast the global cancer vaccines market to grow at a CAGR of 27.24 percent over the period 2014-2019.

HIV/AIDS Vaccine:

The 21st International AIDS Conference (AIDS 2016) held in Durban, South Africa from July 18 to 22, 2016, revealed that a vaccine against HIV will be trialed in South Africa later in 2016, after meeting the criteria needed to prove it, could help fight the epidemic in Africa. A small trial, known as HVTN100, took place in South Africa in 2015 to test the safety and strength of immunity the vaccine could provide, ahead of any large-scale testing in affected populations.

This development reportedly has its origin in a large landmark 2009 trial of RV 144 vaccine in Thailand, demonstrating the proof of concept that a preventive vaccine with a risk reduction of 31 percent could effectively work.  The trial was supported by the World Health Organization (WHO) and UNAIDS. The clinical trial participants who received Vacc-4x, reportedly “experienced a 70 percent viral load decrease relative to their level before starting Anti-Retroviral Therapy (ART), compared with no notable reduction among placebo recipients.”

Alzheimer’s disease vaccine:

A vaccine for Alzheimer’s disease could be trialed in human within the next 3-5 years, after researchers from the United States and Australia have uncovered a formulation that they say successfully targets brain proteins, which play a role in the development and progression of the disease, states a July 18, 2016 report published in the ‘Medical News Today (MNT)’.

This vaccine generates antibodies that target beta-amyloid and tau proteins in the brain – both of which are considered hallmarks of Alzheimer’s disease. In their study, the researchers found that the formulation was effective and well-tolerated in Alzheimer’s mouse models, with no reports of adverse reactions. The vaccine was also able to target the proteins in brain tissue from patients with Alzheimer’s.

Study co-author Prof. Michael Agadjanyan, Institute for Molecular Medicine, California said: “This study suggests that we can immunize patients at the early stages of AD (Alzheimer’s disease), or even healthy people at risk for AD, using our anti-amyloid-beta vaccine, and, if the disease progresses, then vaccinate with another anti-tau vaccine to increase effectiveness.”

If the vaccine continues to show success in these preclinical trials, the researchers envisage that they could be testing the vaccine in individuals at high risk for Alzheimer’s, or those in the early stages of the disease, within the next 3-5 years.

More details on vaccine development:

A 2012 report on vaccines, published by the Pharmaceutical Research and Manufacturers of America (PhRMA) give details of vaccines under development.

Vaccine requirements of the developing world: 

Developing countries of the world are now demanding more of those vaccines, which no longer feature in the immunization schedules of the developed nations. Thus, to supply these vaccines at low cost will be a challenge, especially for the global vaccine manufacturers, unless the low margins get well compensated by high institutional demand.

Issues and challenges:

To produce a safe, effective and marketable vaccine, besides R&D costs, it takes reportedly around 12 to 15 years of painstaking research and development process.

Moreover, one will need to realize that the actual cost of vaccines will always go much beyond their R&D expenses. This is mainly because of dedicated and highly specialized manufacturing facilities required for mass-scale production of vaccines, and then for the distribution of the same mostly using cold-chains.

Around 60 percent of the production costs of vaccines are fixed in nature (National Health Policy Forum. 25. January 2006:14). Thus, such products will need to have a decent market size to be profitable. Unlike many other medications for chronic ailments, which need to be taken for a long duration, vaccines are administered for a limited number of times, restricting their business potential.

Thus, the long lead time required for the ‘mind to market’ process for vaccine development together with high cost involved in their clinical trials/marketing approval process, special bulk/institutional purchase price and limited demand through retail outlets, restrict the research and development initiatives for vaccines, unlike many other pharmaceutical products.

Besides, even the newer vaccines will mostly be required for the diseases of the poor, like Malaria, Tuberculosis, HIV and ‘Non-Communicable Diseases (NCDs)’ in the developing countries, which may not necessarily guarantee a decent return on investments for vaccines, unlike many other newer drugs. Thus, the key issue for developing a right type of newer vaccine will continue to be a matter of pure economics.

India needs a vibrant vaccine business sector:

For a greater focus on all important disease prevention initiatives, there is a need to build a vibrant vaccine business sector in India. To achieve this objective the government should create an enabling ecosystem for the vaccine manufacturers and the academics to work in unison. At the same time, the state funded vaccine R&D centers should be encouraged to concentrate more on the relevant vaccine development projects, ensuring a decent return on their investments for long-term economic sustainability.

Often, these stakeholders find it difficult to deploy sufficient fund to take their vaccine projects successfully through various stages of clinical development to obtain marketing approval from the drug regulator, while earning a decent return on investments. This critical issue needs to be urgently addressed by the Government to make the disease prevention initiatives in the country sustainable.

A possible threat to overcome: 

As per reports, most Indian vaccine manufacturers get a major chunk of their sales revenue from exports to UN agencies, charitable organizations like, the Bill & Melinda Gates Foundation, GAVI, and other country-specific immunization programs.

The report predicts, the virtual monopoly that Indian vaccine manufacturers have enjoyed in these areas, will now be challenged by China, as for the first time in 2012, the Chinese national regulatory authority received ‘pre-qualification’ certification of WHO that allows it to approve locally manufactured vaccines to compete for UN tenders.

Conclusion:

Keeping this in perspective, vaccine related pragmatic policy measures need to be taken in the country for effective disease prevention, covering all recommended age groups, of course, with an equal focus on their effective implementation, without delay. Consequently, this will not only help reduce the disease burden in the country, but also provide the much-awaited growth momentum to the vaccine market in India.

Alongside, increasing number of modern imported vaccines coming in, would help India address one of its key healthcare concerns effectively, and in a holistic way.

It is about time to aggressively garner adequate resources to develop more modern vaccines in the country. In tandem, a rejuvenated thrust to effectively promote and implement vaccine awareness campaigns, would help immensely in the nation’s endeavor for disease prevention with vaccines, that offers a huge scope to reduce disease burden, for a healthier India.

By: Tapan J. Ray

Disclaimer: The views/opinions expressed in this article are entirely my own, written in my individual and personal capacity. I do not represent any other person or organization for this opinion.

R&D: Is Indian Pharma Moving Up the Value Chain?

It almost went unnoticed by many, when in the post product patent regime, Ranbaxy launched its first homegrown ‘New Drug’ of India, Synriam, on April 25, 2012, coinciding with the ‘World Malaria Day’. The drug is used in the treatment of plasmodium falciparum malaria affecting adult patients.  However, the company has also announced its plans to extend the benefits of Synriam to children in the malaria endemic zones of Asia and Africa.

The new drug is highly efficacious with a cure rate of over 95 percent offering advantages of “compliance and convenience” too. The full course of treatment is one tablet a day for three days costing less than US$ 2.0 to a patient.

Synriam was developed by Ranbaxy in collaboration with the Department of Science  and Technology of the Government of India. The project received support from the Indian Council of Medical Research (ICMR) and conforms to the recommendations of the World Health Organization (WHO). The R&D cost for this drug was reported to be around US$ 30 million. After its regulatory approval in India, Synriam is now being registered in many other countries of the world.

Close on the heels of the above launch, in June 2013 another pharmaceutical major of India, Zydus Cadilla announced that the company is ready for launch in India its first New Chemical Entity (NCE) for the treatment of diabetic dyslipidemia. The NCE called Lipaglyn has been discovered and developed in India and is getting ready for launch in the global markets too.

The key highlights of Lipaglyn are reportedly as follows:

  • The first Glitazar to be approved in the world.
  • The Drug Controller General of India (DCGI) has already approved the drug for launch in India.
  • Over 80% of all diabetic patients are estimated to be suffering from diabetic dyslipidemia. There are more than 350 million diabetics globally – so the people suffering from diabetic dyslipidemia could be around 300 million.

With 20 discovery research programs under various stages of clinical development, Zydus Cadilla reportedly invests over 7 percent of its turnover in R&D.  At the company’s state-of-the-art research facility, the Zydus Research Centre, over 400 research scientists are currently engaged in NCE research alone.

Prior to this in May 14, 2013, the Government of India’s Department of Biotechnology (DBT) and Indian vaccine company Bharat Biotech jointly announced positive results, having excellent safety and efficacy profile in Phase III clinical trials, of an indigenously developed rotavirus vaccine.

The vaccine name Rotavac is considered to be an important scientific breakthrough against rotavirus infections, the most severe and lethal cause of childhood diarrhea, responsible for approximately 100,000 deaths of small children in India each year.

Bharat Biotech has announced a price of US$ 1.00/dose for Rotavac. When approved by the Drug Controller General of India, Rotavac will be a more affordable alternative to the rotavirus vaccines currently available in the Indian market. 

It is indeed interesting to note, a number of local Indian companies have started investing in pharmaceutical R&D to move up the industry value chain and are making rapid strides in this direction.

Indian Pharma poised to move-up the value-chain:

Over the past decade or so, India has acquired capabilities and honed skills in several important areas of pharma R&D, like for example:

  • Cost effective process development
  • Custom synthesis
  • Physical and chemical characterization of molecules
  • Genomics
  • Bio-pharmaceutics
  • Toxicology studies
  • Execution of phase 2 and phase 3 studies

According to a paper titled, “The R&D Scenario in Indian Pharmaceutical Industry” published by Research and Information System for Developing Countries, over 50 NCEs/NMEs of the Indian Companies are currently at different stages of development, as follows:

Company Compounds Therapy Areas Status
Biocon 7 Oncology, Inflammation, Diabetes Pre-clinical, phase II, III
Wockhardt 2 Anti-infective Phase I, II
Piramal Healthcare 21 Oncology, Inflammation, Diabetes Lead selection, Pre-clinical, Phase I, II
Lupin 6 Migraine, TB, Psoriasis, Diabetes, Rheumatoid Arthritis Pre-clinical, Phase I, II, III
Torrent 1 Diabetic heart failure Phase I
Dr. Reddy’s Lab 6 Metabolic/Cardiovascular disorders, Psoriasis, migraine On going, Phase I, II
Glenmark 8 Metabolic/Cardiovascular /Respiratory/Inflammatory /Skin disorders, Anti-platelet, Adjunct to PCI/Acute Coronary Syndrome, Anti-diarrheal, Neuropathic Pain, Skin Disorders, Multiple Sclerosis, Ongoing, Pre-clinical, Phase I, II, III

R&D collaboration and partnership:

Some of these domestic companies are also entering into licensing agreements with the global players in the R&D space. Some examples are reportedly as follows:

  • Glenmark has inked licensing deals with Sanofi of France and Forest Laboratories of the United States to develop three of its own patented molecules.
  • Domestic drug major Biocon has signed an agreement with Bristol Myers Squibb (BMS) for new drug candidates.
  • Piramal Life Sciences too entered into two risk-reward sharing deals in 2007 with Merck and Eli Lilly, to enrich its research pipeline of drugs.
  • Jubilant Group partnered with Janssen Pharma of Belgium and AstraZeneca of the United Kingdom for pharma R&D in India, last year.

All these are just indicative collaborative R&D initiatives in the Indian pharmaceutical industry towards harnessing immense growth potential of this area for a win-win business outcome.

The critical mass:

An international study estimated that out of 10,000 molecules synthesized, only 20 reach the preclinical stage, 10 the clinical trials stage and ultimately only one gets regulatory approval for marketing. If one takes this estimate into consideration, the research pipeline of the Indian companies would require to have at least 20 molecules at the pre-clinical stage to be able to launch one innovative product in the market.

Though pharmaceutical R&D investments in India are increasing, still these are not good enough. The Annual Report for 2011-12 of the Department of Pharmaceuticals indicates that investments made by the domestic pharmaceutical companies in R&D registered an increase from 1.34 per cent of sales in 1995 to 4.5 percent in 2010. Similarly, the R&D expenditure for the MNCs in India has increased from 0.77 percent of their net sales in 1995 to 4.01 percent in 2010.

Thus, it is quite clear, both the domestic companies and the MNCs are not spending enough on R&D in India. As a result, at the individual company level, India is yet to garner the critical mass in this important area.

No major R&D investments in India by large MNCs:

According to a report, major foreign players with noteworthy commercial operations in India have spent either nothing or very small amount towards pharmaceutical R&D in the country. The report also mentions that Swiss multinational Novartis, which spent $ 9 billion on R&D in 2012 globally, does not do any R&D in India.

Analogue R&D strategy could throw greater challenges:

For adopting the analogue research strategy, by and large, the Indian pharma players appear to run the additional challenge of proving enhanced clinical efficacy over the known substance to pass the acid test of the Section 3(d) of the Patents Act of India.

Public sector R&D:

In addition to the private sector, research laboratories in the public sector under the Council for Scientific and Industrial Research (CSIR) like, Central Drug Research Institute (CDRI), Indian Institute of Chemical Technology (IICT) and National Chemical Laboratory (NCL) have also started contributing to the growth of the Indian pharmaceutical industry.

As McKinsey & company estimated, given adequate thrust, the R&D costs in India could be much lower, only 40 to 60 per cent of the costs incurred in the US. However, in reality R&D investments of the largest global pharma R&D spenders in India are still insignificant, although they have been expressing keenness for Foreign Direct Investments (FDI) mostly in the brownfield pharma sector.

Cost-arbitrage:

Based on available information, global pharma R&D spending is estimated to be over US$ 60 billion. Taking the cost arbitrage of India into account, the global R&D spend at Indian prices comes to around US$ 24 billion. To achieve even 5 percent of this total expenditure, India should have invested by now around US$ 1.2 billion on the pharmaceutical R&D alone. Unfortunately that has not been achieved just yet, as discussed above.

Areas of cost-arbitrage:

A survey done by the Boston Consulting Group (BCG) in 2011 with the senior executives from the American and European pharmaceutical companies, highlights the following areas of perceived R&D cost arbitrage in India:

Areas % Respondents
Low overall cost 73
Access to patient pool 70
Data management/Informatics 55
Infrastructure set up 52
Talent 48
Capabilities in new TA 15

That said, India should realize that the current cost arbitrage of the country is not sustainable on a longer-term basis. Thus, to ‘make hay while the sun shines’ and harness its competitive edge in this part of the world, the country should take proactive steps to attract both domestic as well as Foreign Direct Investments (FDI) in R&D with appropriate policy measures and fiscal incentives.

Simultaneously, aggressive capacity building initiatives in the R&D space, regulatory reforms based on the longer term need of the country and intensive scientific education and training would play critical role to establish India as an attractive global hub in this part of the world to discover and develop newer medicines for all.

Funding:

Accessing the world markets is the greatest opportunity in the entire process of globalization and the funds available abroad could play an important role to boost R&D in India. Inadequacy of funds in the Indian pharmaceutical R&D space is now one of the greatest concerns for the country.

The various ways of funding R&D could be considered as follows:

  • Self-financing Research: This is based on:
  1. “CSIR Model”: Recover research costs through commercialization/ collaboration with industries to fund research projects.
  2. “Dr Reddy’s Lab / Glenmark Model”: Recover research costs by selling lead compounds without taking through to development.
  • Overseas Funding:  By way of joint R&D ventures with overseas collaborators, seeking grants from overseas health foundations, earnings from contract research as also from clinical development and transfer of aborted leads and collaborative projects on ‘Orphan Drugs’.
  • Venture Capital & Equity Market:  This could be both via ‘Private Venture Capital Funds’ and ‘Special Government Institutions’.  If regulations permit, foreign venture funds may also wish to participate in such initiatives. Venture Capital and Equity Financing could emerge as important sources of finance once track record is demonstrated and ‘early wins’ are recorded.
  • Fiscal & Non-Fiscal Support: Should also be valuable in early stages of R&D, for which a variety of schemes are possible as follows:
  1. Customs Duty Concessions: For Imports of specialized equipment, e.g. high throughput screening equipment, equipment for combinatorial chemistry, special analytical tools, specialized pilot plants, etc.
  2. Income tax concessions (weighted tax deductibility): For both in-house and sponsored research programs.
  3. Soft loans: For financing approved R&D projects from the Government financial institutions / banks.
  4. Tax holidays: Deferrals, loans on earnings from R&D.
  5. Government funding: Government grants though available, tend to be small and typically targeted to government institutions or research bodies. There is very little government support for private sector R&D as on date.

All these schemes need to be simple and hassle free and the eligibility criteria must be stringent to prevent any possible misuse.

Patent infrastructure:

Overall Indian patent infrastructure needs to be strengthened, among others, in the following areas:

  • Enhancement of patent literacy both in legal and scientific communities, who must be taught how to read, write and file a probe.
  • Making available appropriate ‘Search Engines’ to Indian scientists to facilitate worldwide patent searches.
  • Creating world class Indian Patent Offices (IPOs) where the examination skills and resources will need considerable enhancement.
  • ‘Advisory Services’ on patents to Indian scientists to help filing patents in other countries could play an important role.

Creating R&D ecosystem:

  • Knowledge and learning need to be upgraded through the universities and specialist centers of learning within India.
  • Science and Technological achievements should be recognized and rewarded through financial grants and future funding should be linked to scientific achievements.
  • Indian scientists working abroad are now inclined to return to India or network with laboratories in India. This trend should be effectively leveraged.

Universities to play a critical role:

Most of Indian raw scientific talents go abroad to pursue higher studies.  International Schools of Science like Stanford or Rutgers should be encouraged to set up schools in India, just like Kellogg’s and Wharton who have set up Business Schools. It has, however, been reported that the Government of India is actively looking into this matter.

‘Open Innovation’ Model:

As the name suggest, ‘Open Innovation’ or the ‘Open Source Drug Discovery (OSDD)’ is an open source code model of discovering a New Chemical Entity (NCE) or a New Molecular Entity (NME). In this model all data generated related to the discovery research will be available in the open for collaborative inputs. In ‘Open Innovation’, the key component is the supportive pathway of its information network, which is driven by three key parameters of open development, open access and open source.

Council of Scientific and Industrial Research (CSIR) of India has adopted OSDD to discover more effective anti-tubercular medicines.

Insignificant R&D investment in Asia-Pacific Region:

Available data indicate that 85 percent of the medicines produced by the global pharmaceutical industry originate from North America, Europe, Japan and some from Latin America and the developed nations hold 97 percent of the total pharmaceutical patents worldwide.

MedTRACK reveals that just 15 percent of all new drug development is taking place in Asia-Pacific region, including China, despite the largest global growth potential of the region.

This situation is not expected to change significantly in the near future for obvious reasons. The head start that the western world and Japan enjoy in this space of the global pharmaceutical industry would continue to benefit those countries for some more time.

Some points to ponder:

  • It is essential to have balanced laws and policies, offering equitable advantage for innovation to all stakeholders, including patients.
  • Trade policy is another important ingredient, any imbalance of which can either reinforce or retard R&D efforts.
  • Empirical evidence across the globe has demonstrated that a well-balanced patent regime would encourage the inflow of technology, stimulate R&D, benefit both the national and the global pharmaceutical sectors and most importantly improve the healthcare system, in the long run.
  • The Government, academia, scientific fraternity and the pharmaceutical Industry need to get engaged in various relevant Public Private Partnership (PPP) arrangements for R&D to ensure wider access to newer and better medicines in the country, providing much needed stimulus to the public health interest of the nation.

Conclusion:

R&D initiatives, though very important for most of the industries, are the lifeblood for the pharmaceutical sector, across the globe, to meet the unmet needs of the patients. Thus, quite rightly, the pharmaceutical Industry is considered to be the ‘lifeline’ for any nation in the battle against diseases of all types.

While the common man expects newer and better medicines at affordable prices, the pharmaceutical industry has to battle with burgeoning R&D costs, high risks and increasingly long period of time to take a drug from the ‘mind to market’, mainly due to stringent regulatory requirements. There is an urgent need to strike a right balance between the two.

In this context, it is indeed a proud moment for India, when with the launch of its home grown new products, Synriam of Ranbaxy and Lipaglyn of Zydus Cadilla or Rotavac Vaccine of Bharat Biotech translate a common man’s dream of affordable new medicines into reality and set examples for others to emulate.

Thus, just within seven years from the beginning of the new product patent regime in India, stories like Synriam, Lipaglyn, Rotavac or the R&D pipeline of over 50 NCEs/NMEs prompt resurfacing the key unavoidable query yet again:

Has Indian pharma started catching-up with the process of new drug discovery, after decades of hibernation, to move up the industry ‘Value Chain’?

By: Tapan J. Ray

Disclaimer: The views/opinions expressed in this article are entirely my own, written in my individual and personal capacity. I do not represent any other person or organization for this opinion.

Vaccines Development: Is it Just a Business Based on Fear?

‘Vaccination – A Business based on fear’, is the title of a book written by Dr. Gerhard Buchwald M.D, a German medical doctor and a vaccination critic. This book talks about:

“The damage and the deaths caused by vaccination are written off as ‘pure coincidence’, as something which would have occurred anyway, even without vaccination. Often damage is trivialized by claiming that vaccine damage occurs only very, very rarely, or the damage is covered up by naming as the cause, the most unlikely syndromes which can only be found in special literature.”

However, his critics and pro-vaccination experts do opine that this book “is a pathetic presentation of vaccination, from a self-proclaimed anti-vaccination lobbyist. It is full of half-truths, blatant lies and misrepresented statistics”.

Vaccination – one of the most important development in medicines: 

Quite in contrary to what Dr. Gerhard Buchwald wrote, vaccination was voted as one of the four most important developments in medicine of the past 150 years, alongside sanitation, antibiotics and anesthesia by readers of the ‘British Medical Journal’ in 2007. No wonder, Vaccines are one of the most successful and cost-effective public health interventions, which help preventing over 3 million deaths every year throughout the world topping the list in terms of lives saved.

Vaccines that are being developed and marketed today, though provide high level of protection against increasing number of diseases with reduction of associated morbidity and mortality, there is still a crying need for greater encouragement, more resource deployment and sharper focus towards newer vaccines development for many more dreaded and difficult diseases.

In tandem, concerted efforts need to be made by both the industry and the government to improve affordable access to all these vaccines for a larger section of the population, especially in the developing world.

Rejuvenating trend:

However, from the business perspective, the vaccine market, though initially considered to be a low-profit initiative, now has started being under rejuvenated focus keeping pace with improved understanding of the human immune system. The future scope of vaccines is immense, as the management of several potentially preventable diseases remains still unaddressed.

Consequently, the focus of the global vaccine industry is getting expanded from prophylactic vaccination for communicable disease (e.g. DTP vaccine) to therapeutic vaccines (e.g. Anti-cancer vaccines) and then possibly non-communicable disease vaccines (e.g. vaccines for coronary artery disease).

Shifting focus on vaccines types:

As per the ‘National Institute of Health (NIH)’ of USA, following are some types of vaccines that researchers usually work on:

  • Live, attenuated vaccines
  • Inactivated vaccines
  • Subunit vaccines
  • Toxoid vaccines
  • Conjugate vaccines
  • DNA vaccines
  • Recombinant vector vaccines

Among all these segments, sub-unit vaccine is the largest revenue generator, though synthetic vaccines, recombinant vector vaccines, and DNA vaccines are emerging as the fastest-growing segments.

The first vaccine of the world:

In 1796, Edward Anthony Jenner not only discovered the process of vaccination, alongside developed the first vaccine of the world for mankind – smallpox vaccine. To develop this vaccine Jenner acted upon the observation that milkmaids who caught the cowpox virus did not catch smallpox.

As per published data prior to his discovery the mortality rate for smallpox was as high as up to 35%. Thus, Jenner is very often referred to as the “Father of Immunology”, whose pioneering work has “saved more lives than the work of any other person.”

Later on in 1901 Emil Von Behring received the first Nobel Prize (ever) for discovering Diphtheria serum therapy.

R&D costs for vaccines:

According to a paper published by the US National Library of Medicine and National Institute of Health (NIH):

“A vaccine candidate entering pre-clinical development in 2011 would be expected to achieve licensure in 2022; all costs are reported in 2022 Canadian dollars (CAD). After applying a 9% cost of capital, the capitalized total R&D expenditure amounts to $ 474.88 million CAD.”

Issues and challenges:

To produce a safe and effective marketable vaccine, besides R&D costs, it takes reportedly around 12 to 15 years of painstaking research and development process.

Moreover, one will need to realize that the actual cost of vaccines will always go much beyond their R&D expenses. This is mainly because of dedicated and highly specialized manufacturing facilities required for mass-scale production of vaccines and then for the distribution of the same mostly using cold-chains.

Around 60% of the production costs for vaccines are fixed in nature (National Health Policy Forum. 25. January 2006:14). Thus such products will need to have a decent market size to be profitable.

Unlike many other medications for chronic ailments, which need to be taken for a long duration, vaccines are administered for a limited number of times, restricting their business potential.

Thus, the long lead time required for the ‘mind to market’ process for vaccine development together with high cost involved in their clinical trials/marketing approval process, special bulk/institutional purchase price and limited demand through retail outlets, restrict the research and development initiatives for vaccines, unlike many other pharmaceutical products.

Besides, even the newer vaccines will mostly be required for the diseases of the poor, like Malaria, Tuberculosis, HIV and ‘Non Communicable Diseases (NCDs)’ in the developing countries, which may not necessarily guarantee a decent return on investments for vaccines, unlike many other newer drugs. As a result, the key issue for developing a right type of newer vaccine will continue to be a matter of pure economics.

A great initiative called GAVI: 

Around 23 million children of the developing countries are still denied of important and life-saving vaccines, which otherwise come rather easily to the children of the developed nations of the world.

To resolve this inequity, in January 2000, the Global Alliance for Vaccines and Immunization (GAVI) was formed. This initiative was mainly aimed at generating sufficient fund to ensure availability of vaccines for children living in the 70 poorest countries of the world.

The GAVI Alliance has been instrumental in improving access to six common infant vaccines, including those for hepatitis B and yellow fever. GAVI is also working to introduce pneumococcal, rotavirus, human papilloma virus, meningococcal, rubella and typhoid vaccines in not too distant future.

In August 2013, GAVI has reportedly launched a campaign in Kenya to fight the world’s leading killer of children under five with a new Pneumococcal Vaccine for prevention from pneumonia, meningitis and sepsis, which kill more than half a million people a year.

GAVI hopes to avert 700,000 deaths by 2015 through the immunization of 90 million children with pneumococcal vaccines.

Global pharma majors Pfizer and GlaxoSmithKline (GSK) are producing the vaccines as a part of a deal part-funded by Britain, Italy, Canada, Russia, Norway and the Bill Melinda Gates Foundation.

Current trend in newer vaccine development:

Malaria Vaccine:

According to the National Institute of Health (NIH) of the United States, the results of an early-stage clinical trial published in August 8, 2013 in the ‘Journal Science’ for an investigational malaria vaccine has been found to be safe to generate an immune system response and to offer protection against malaria infection in healthy adults.

The scientists at Sanaria Inc., of Rockville, Md. Research Center developed this vaccine known as PfSPZ. The researchers reportedly found that injecting patients with live-but-weakened malaria causing parasites appeared to create a protective effect.

Earlier, Reuters on December 20, 2011 reported that the British scientists have developed an experimental malaria vaccine, which has the potential to neutralize all strains of the most deadly species of malaria parasite.

In October 2011, the data published for a large clinical trial conducted in Africa by GlaxoSmithKline on their experimental malaria vaccine revealed that the risk of children getting malaria had halved with this vaccine. Reuters also reported that other teams of researchers around the world are now working on different approaches to develop a malaria vaccine.

Tuberculosis vaccines:

The Lancet reported in March 2013, as BCG vaccination provides incomplete protection against tuberculosis in infants, a new vaccine, modified Vaccinia Ankara virus expressing antigen 85A (MVA85A), has been designed to enhance the protective efficacy of BCG. MVA85A was found well-tolerated and induced modest cell-mediated immune responses. However, the reasons for the absence of MVA85A efficacy against tuberculosis or M tuberculosis infection in infants would need exploration.

Universal Cancer vaccines:

In a breakthrough development, the Israeli company Vaxil BioTherapeutics has reportedly formulated a therapeutic cancer vaccine, now in clinical trials at Hadassah University Medical Center in Jerusalem.

If everything falls in place, the vaccine could be available about six years down the road, to administer on a regular basis not only to help treating cancer but also to keep the disease from recurring.

Though the vaccine is being tested against a type of blood cancer called multiple myeloma, if it works as the initial results indicate, its platform technology VaxHit could be applied to 90 percent of all known cancers, including prostate and breast cancer, solid and non-solid tumors.

HIV Vaccine:

A recent effort to find a vaccine for HIV is reportedly beginning in 2013 at laboratories in a London hospital and two centers in Africa. The work will be split equally between London, the Rwandan capital Kigali and Nairobi in Kenya.

It has been reported that scientists are recruiting 64 healthy adult volunteers for the trial, which is expected to take up to two years.

Vaccines requirements of the developing world: 

Developing countries of the world are now demanding more of those vaccines, which no longer feature in the immunization schedules of the developed nations. Thus to supply these vaccines at low cost will be a challenge, especially for the global vaccine manufacturers, unless the low margins get well compensated by high institutional demand.

India needs a vibrant vaccine business sector:

For greater focus on all important disease prevention initiatives, there is a need to build a vibrant vaccine business sector in India. To achieve this objective the government should create an enabling ecosystem for the vaccine manufacturers and the academics to work in unison. At the same time, the state funded vaccine R&D centers should be encouraged to concentrate more on the relevant vaccine development projects ensuring a decent return on their investments, for longer-term economic sustainability.

More often than not, these stakeholders find it difficult to deploy sufficient fund to take their vaccines projects successfully through various stages of clinical development in order to obtain marketing approval from the drug regulator, while registering a decent return on investments. This critical issue needs to be appropriately and urgently addressed by the Government to make the disease prevention initiatives in the country sustainable.

Changing market dynamics: 

Even in a couple of decades back, ‘Vaccines Market’ in India did not use to be considered as a focus area by many pharmaceutical companies. Commoditization of this market with low profit margin and unpredictable interest of the government/the doctors towards immunization were the main reasons. Large global players like Glaxo exited the vaccine market at that time by withdrawing products like, Tetanus Toxoid, Triple Antigen and other vaccines from the market.

Currently, the above scenario is fast changing. The vaccine market, as stated above, is getting rejuvenated not only with the National Immunization Program (NIP) of the country, but also with the emergence of newer domestic vaccines players and introduction of novel vaccines by the global players, which we shall discuss below.

In addition, the ‘Indian Academy of Pediatrics (IAP) Committee on Immunization’ now recommends the ‘best individual practices schedule’ for the children in consultation with their respective parents. Such schedule may not conform to NIP and include newer vaccines, broadening the scope of use of vaccines in general.

Global Market:

According to GBI Research Report, overall global vaccines market was valued at US$ 28 billion in 2010 and is expected to reach US$ 56.7 billion by 2017 with a CAGR of 11.5%. The key growth driver of this segment will be introduction of newer vaccines, which are currently either in the regulatory filing stage or in the late stages of clinical development.

The important international players in the vaccines market are GlaxoSmithKline, Sanofi, Pfizer, Novartis AG, Merck and SP-MSD. Together they represent around 88% of the total vaccine segment globally, the report highlights.

Indian Market:

McKinsey in its report titled, “India Pharma 2020: Propelling access and acceptance, realizing true potential“ stated that at 2% penetration, the vaccines market of India is significantly under-penetrated with an estimated turnover of around US$ 250 million, where the private segment accounts for two-thirds of the total. McKinsey expects the market to grow to US$ 1.7 billion by 2020.

India is one of largest markets for all types of vaccines in the world. The new generation and combination vaccines, like DPT with Hepatitis B, Hepatitis A and Injectable polio vaccine, are driving the growth. The demand for veterinary vaccines is also showing ascending trend. Pediatric vaccines contribute to around 60% of the total vaccines market in India.

Domestic Indian players like, Serum Institute, Shantha Biotecnics, Bharat Biotech and Panacea Biotech are poised to take greater strides in this direction. Bharat Biotech is incidentally the largest Hepatitis B vaccine producer in the world. Likewise, Serum Institute is reportedly one of the largest suppliers of vaccines to over 130 countries and claim that ’1 out of every 2 children immunized worldwide gets at least one vaccine produced by Serum Institute.’

The first new vaccine developed in India:

Indian scientists from Bharat Biotech Ltd in Hyderabad have reportedly developed a new oral vaccine against the Rotavirus induced diarrhea, where both vomiting and loose motion can severely dehydrate children very quickly. This is the first new vaccine developed in India, establishing itself as the first developing country to achieve this unique distinction.

Two recent vaccine JV and Partnership agreements in India:

British drug major GlaxoSmithKline (GSK) has reportedly agreed to form a 50-50 venture with the domestic Indian vaccine manufacturer Biological E Limited in January 2013 to develop a product that would combine GSK’s injectable polio shot with a vaccine produced by Biological E to protect against five diseases including diphtheria and tetanus.

In addition, MSD pharma of the United States and Indian drug major Lupin have announced a partnership agreement to market, promote and distribute, MSD’s 23-valent Pneumococcal Polysaccharide Vaccines under a different brand name in India for prevention of Pneumococcal disease, pneumonia being its most common form affecting adults.

A possible threat: 

As per reports most Indian vaccines manufacturers get a major chunk of their sales revenue from exports to UN agencies, charitable organizations like, the Bill & Melinda Gates Foundation and GAVI, and other country-specific immunization programs.

The report predicts, the virtual monopoly that Indian vaccines manufacturers have enjoyed in these areas, will now be challenged by China, as for the first time, in 2012, the Chinese national regulatory authority received World Health Organization’s (WHO) ‘pre-qualification’ certification that allows it to approve locally manufactured vaccines to compete for UN tenders. 

Action areas to drive growth:

McKinsey in its above report ‘India Pharma 2020’ indicated that the action in the following 4 areas by the vaccine players would drive the vaccine market growth in India:

  • Companies need to go for local production of vaccines or leverage supply partnerships. MSD and GlaxoSmithKline’s local partnership in India and for the HiB vaccine with Bio-manguinhos in Brazil may be cited as examples.
  • Companies will need to conduct studies on the economic impact of vaccination and establish vaccine safety and performance standards.
  • Extension of vaccine coverage beyond pediatricians and inclusion of general practitioners, consulting physicians and gynecologists will be essential.
  • Companies will need to enhance supply chain reliability and reduce costs.

Conclusion: 

On January 7, 2012, while requesting the ‘Overseas Indian Medical Professionals’ to partner with the institutions in India, the Health Minister, in his address, announced that the Ministry of Health has already introduced the second dose of measles vaccine and Hepatitis-B vaccination across the country. Moreover, from December 2011 a ‘Pentavalent Vaccine’ has been introduced, initially in 2 States, covering 1.5 million children of India.

All these augur quite well for the country. However, keeping in view of the humongous disease burden of India, immunization program with various types of vaccines should receive active encouragement from the government as disease prevention initiatives, keeping the future generation in mind.

If vaccine related pragmatic policy measures, with equal focus on their effective implementation, are initiated in the country, without delay, the domestic vaccine market, in turn, will receive much awaited further growth momentum. Such initiatives together with newer foreign players and modern imported vaccines coming in, would help the country addressing effectively a prime healthcare concern of the country in a holistic way.

It is about time to aggressively garner adequate resources to develop more modern vaccines in the country, promote and implement vaccine awareness campaigns in the nation’s endeavor for disease prevention before they strike hard and at times fatally.

That said, taking available real world facts into account, doesn’t Dr. Gerhard Buchwald’s and today’s anti-vaccination lobbyists’ postulation, ‘Vaccination – A Business based on fear’, appear to be emanating from a self created world of doom and gloom, defying public health interest for effective disease prevention?

By: Tapan J. Ray

Disclaimer: The views/opinions expressed in this article are entirely my own, written in my individual and personal capacity. I do not represent any other person or organization for this opinion.