

Blockbuster Innovation: Does it still exist?

Tapan Ray

International Seminar on Harnessing Innovation January 29 & 30, 2009 - New Delhi

Innovation through R&D is the life blood of the Pharmaceutical Industry to meet the unmet needs of ailing patients.

Definition

- Blockbusters : Sales Revenue ≥ US\$ 1 Bn/Yr (100)
- Super Blockbusters : Sales Revenue ≥ US\$ 2 Bn/Yr (5 - Lipitor, Plavix, Celebrex, Prilosec and Nexium)

Magazine Special - Pharma Focus Asia Pacific - Issue 9 - 2008

Blockbuster & Challenges

Magazine Special - Pharma Focus Asia Pacific - Issue 9 - 2008

Top 10 Blockbusters - 2007

Company	Product Name	Therapeutic Class	Global Turnover (€ Bn)	% Product Share of Company Turnover (Global)
Pfizer	Lipitor (atorvastatin calcium)	Cardiovascular System	9.25	30
GSK	Seretide/Advair (fluticasone + salmeterol)	Respiratory System	5.11	18
Johnson & Johnson	Risperdal (risperidone)	Nervous System	6.23	35
Sanofi-Aventis	Clopidogrel (clopidogrel)	Blood & Blood Forming organs	2.42	9
Hoffmann-La Roche	Herceptin (trastuzumab)	Antineoplastic and Immunomodulating agent	2.95	13
Nycomed	Pantoprazole (pantoprazole)	Alimenatry Tract & Metabolism	1.68	55
Wyeth	Enbrel (etanercept)	Antineoplastic and Immunomodulating agent	1.49	13
Johnson & Johnson	Eprex (epoetin alfa)	Blood & Blood Forming Organs	1.64	9
Eli Lilly	Zyperxa (olanzapine)	Nervous System	3.47	27
Novartis	Glivec (imatinib)	Antineoplastic and Immunomodulating agent	2.23	13
		Total/Average	36.47	19

Source: Pharmaceutical Sector Inquiry - Issue Nov.2008 - Page No.34

Key Challenge of Blockbuster Drugs

A drug may be withdrawn even after achieving Blockbuster status on various issues like:

- Vioxx (MSD) U.S.\$ 2.5 Bn/Yr Super Blockbuster was pulled from the market on safety issues.
- Subsequently led to U.S.\$ 5 Bn settlement of legal proceedings from effective patients.
- The stock value of MSD came down from U.S.\$ 44 /share to U.S.\$ 28 /share immediately post-withdrawal.

R&D Pipeline Running Dry

North American Pharmaceutical Firms*

Pharmaceutical R&D: Pipeline Running Dry - Exploring Alternatives

North America

Year	R&D Spend	NCEs Approved
1995	U.S.\$ 15 Bn	54
2006	U.S.\$ 22 Bn	43

Source: Economist - June 30, 2007

Number of New Molecular Entities (NME) first launch worldwide (1990-2007)

Source: EFPIA and CMR International (Thomson Reuter)

New Product Development is Risky, Time-consuming and Expensive

Cost to Develop New Biotech Products Is Estimated to Average \$1.2 – 1.7 Bn

Sources: 1) Increased Length and Complexity of the Research and Development Process. Chapter 1 in: *PhRMA Pharmaceutical Industry Profile 2003*. 2). Tufts Center for the Study of Drug Development. Impact Report, Vol 8, Num 6, November/December 2006

Life Cycle of a Medicine - Pre-launch Period

Source: Pharmaceutical Sector Inquiry - Issue Nov. 2008 - Page No.51

Uniqueness of Drug Discovery

Most regulated industry

- FDA and country-specific multiple agencies
- Risk of post-approval failure (Vioxx and Glitazones)
- Balance between profits and public-health
- Patent expiry and generic competition (India)

Goal-posts keep changing

- Current state of knowledge in Science & Technology
- Biological targets and approaches change significantly and R&D has to rapidly change (stem cells, RNAi, antibodies)

Entirely new opportunities are created by new Science

Global Share of Cost Factors as % of Annual Turnover (Prescription Medicines, 2007)

Manufacturing Costs	Marketing & Promotion Costs	R&D Costs	General Administration & Overhead Costs	Distribution Costs	Other Annual Costs
21	20	18	11	1	1

Source: Pharmaceutical Sector Inquiry - Issue Nov. 2008 - Page No.37

Pessimism for Future Blockbuster Drugs

- Hard for newer drugs to make dramatic differences over older drugs like Statins, Betablockers and ACE Inhibitors.
- Research trials have become very expensive mainly due to increased regulatory requirements.
- Discovering and developing Blockbusters takes long time of around 10-12 years.

R&D Pipeline Running Dry - Points to Ponder

- What comes to the market today is a result of investments made atleast 10-15 years ago.
- Predictions of what the marketplace will look like is a key management skill.
- Would this time lapse explain why today's activity "crisis" is looming so large?
- Whether assumptions about future prospects should be made on the basis of today's pipeline or today's output?

R&D Pipeline Running Dry

Key Areas to address this challenge:

- 1. Quality of Innovation
- 2. Process Efficiency
- 3. Cost Competitiveness
- 4. Merger and Acquisitions

1. Quality of Innovation

Blockbuster Drugs

"Eureka type" of Innovation	Incremental Innovation	
Penicillin	Lipitor (Atorvastatin, Pfizer)	
H2 Receptor Antagonist (Cimetidine)	Norvasc (Amlodipine, Pfizer)	
Calcium Channel Blocker (Nifedipine)	Nexium (Esomeprazole, AstraZeneca)	
Proton Pump Inhibitor (Omeprazole)	Eprex (Epoetin Alfa, J&J)	
Statins	Protonix (Pantoprazole, Nycomed)	
Erythropoietin	Zantac (Ranitidine, GSK)	

In this sense Blockbuster Innovation will continue

2. Process Efficiency

- A. In-house research no longer yielding desired output prompting pharmaceutical companies to form research alliance with academia, biotech and startups.
- B. Some companies restructuring in-house large R&D setup to create smaller units to foster "small company culture", rewarding scientific creativity and innovation.
- C. Adopting a strategy of pharmacogenomics application of genomic screening of individuals to determine their potential response to specific drugs.
- D. Biosimulation using computer software to stimulate drug behaviour in patient tissue cells and organs.

Products of Research Collaboration

- Taxol (paclitaxel), leading cancer drug, developed by National Cancer Institute and Florida State University licensed to Bristol-Myers Squibb.
- Amgen's Epogen was developed by University of Chicago and Columbia.
- Glivec benefitted from NIH funded university researcher.

R&D Cost Effectiveness - Key Challenges

Reducing:

- Costs
- Time

3. Cost Competitiveness

- To reduce R&D costs and time, India a possible hub of choice for collaborative work:
 - 1. R&D outsourcing
 - 2. Outsourcing clinical development
- However, Indian companies will continue to compete with MNCs in the global generic market.

Advantage India

- Clinical studies take between 30-50% of the time spent in R&D.
- Within this 1/3rd of the time in clinical trials is taken in patient recruitment.

Cost & Duration of Trials can be greatly reduced in India:

- India is the second most populous country in the world with a large pool of naive patients and fourth largest pool for medical professionals in the world.
- Rapidly improving support industries and world respected IT industry to support R&D and clinical trials.
- India offers over 700,000 hospital beds at about 1/10th of the price of developed nations.

Cost & Duration of Trials can be greatly reduced in India:

- Over 220 medical colleges and skilled English speaking medical personnel.
- Contract research and clinical development business in India will grow from U.S.\$ 59.4 Mn in 2003-04 to around U.S.\$ 500 Mn to 1 Bn by 2010.

Key Issues

- A. Infrastructure / Facilities and other issues:
 - Against the number of GCP trained investigators of over 40,000 in the U.S., in india this number will be around 300.
- B. IT vs. Pharmaceuticals:
 - IT industry flourished because it was under regulated, pharmaceutical industry is over-regulated.
 - Import of body fluids / test samples from India has been another bottleneck.
 - Ethical trials instances of unethical trials without requisite permissions or ill-informed patients.
 - Local disinformation campaign can also mar clinical trials status and damage company reputation.

Key Issues

- C. Robust IPR Regime:
 - Although Indian Patents Act (Amendment) 2005 is in place, there are still some key concerns in the following areas:
 - Patentability
 - Patent Enforcement
 - Pre-grant Opposition
 - Regulatory Data Protection
 - Compulsory Licensing
 - Patent Infrastructure

Conclusion

- To prevent R&D pipeline getting dry, addressing the issues of cost effectiveness and time for R&D are of utmost importance.
- India could play a major role in this area.
- Benefits in terms of time and cost savings to the global player are too significant to ignore.
- Estimates show that average savings per commercialised NCE/NME can be upto an optimal of over U.S.\$ 350 Mn
- Main competition will come from China. Already in clinical trials are, China is much ahead of India (China 419 and India 376).

Thus, opportunity of having blockbuster drugs through both: > Path-breaking Innovation > Incremental Innovation STILL EXISTS